Open and Closed Sets

Definition Let X be a set and $\mathscr{T}=\{U \mid U \subseteq X\}$ be a collection of subsets of X. Then \mathscr{T} is called a topology on X if
(1) \emptyset and X are in \mathscr{T}.
(2) The union of the elements of any subcollection of \mathscr{T} is in \mathscr{T}.
(3) The intersection of the elements of any finite subcollection of \mathscr{T} is in \mathscr{T}.

A set X for which a topology \mathscr{T} has been specified is called a topological space.
Properly speaking, a topological space is an ordered pair (X, \mathscr{T}) consisting of a set X and a topology \mathscr{T} on X, but we often omit specific mention of \mathscr{T} if no confusion will arise.
Definition Let X be a topological space with topology \mathscr{T}. A subset U of X is called an open set of X if $U \in \mathscr{T}$, i.e. U belongs to the collection \mathscr{T}.
A subset F of X is called an closed set of X if $F^{c}=X \backslash F \in \mathscr{T}$, i.e. the complement subset of F in X is an open set of X.
A subset N is called a neighborhood of p if we can find an open set U such that

$$
p \in U \subseteq N
$$

Note that if N is an open subset of X, then it is a neighborhood of each point $p \in N$.
Remark Let X be a topological space. Then the following conditions hold:
(1) \emptyset and X are open.
(2) Arbitrary union of open sets is open.
(3) Any finite intersection of open sets is open.

Examples

1. Let $X=\mathbb{E}^{n}$ and let $\mathscr{T}=\left\{U \mid \forall x \in U, \exists \varepsilon=\varepsilon(x)>0\right.$ s.t. $\left.B_{\varepsilon}(x) \subset U\right\}$, where $B_{\varepsilon}(x)=$ $\left\{y \in \mathbb{E}^{n} \mid d(x, y)<\varepsilon\right\}$ denotes the Euclidean ball with center x and radius ε. Then \mathscr{T} is a topology on \mathbb{E}^{n} and it is called the usual or standard topology on \mathbb{E}^{n}.
2. Let X be a set and let $\mathscr{T}=\mathscr{P}(X)=\{U \mid U \subset X\}$ be the collection of all subsets of X, called the power set of X. Then \mathscr{T} is a topology on X and it is called the discrete topology on X.
3. Let X be a set and let $\mathscr{T}=\{\emptyset, X\}$ consist of \emptyset and X only. Then \mathscr{T} is a topology on X and it is called the trivial topology on X.
4. Let $X=\mathbb{R}$ and let

$$
\mathscr{T}_{f}=\{U \mid X \backslash U \text { is either finite subset or all of } X\} .
$$

Then \mathscr{T}_{f} is a topology on X, called the the finite complement topology.
Remark Let X be a topological space. Then the following conditions hold:
(1) \emptyset and X are closed.
(2) Arbitrary intersection of closed sets is closed.
(3) Any finite union of closed sets is closed.

Definition Let X be a topological space with topology \mathscr{T} and let Y be a subset of X. Then the collection

$$
\mathscr{T}_{Y}=\{Y \cap U \mid U \in \mathscr{T}\}
$$

is a topology on Y, called the subspace or induced topology. With this topology, Y is called a subspace of X; its open sets consists of all intersections of open sets of X with Y.
Example Let $X=\mathbb{R}$ be the real line with the usual topology $\mathscr{T}=\{(a, b) \mid a<b \in \mathbb{R}\} \cup\{\emptyset, \mathbb{R}\}$ and let $Y=[0,1]$. Then the subspace topology \mathscr{T}_{Y} consists a set of the following types:

$$
(a, b) \cap Y= \begin{cases}(a, b) & \text { if } a \text { and } b \text { are in } Y \\ {[0, b)} & \text { if only } b \text { is in } Y \\ (a, 1] & \text { if only } a \text { is in } Y \\ Y \text { or } \emptyset & \text { if neither } a \text { nor } b \text { is in } Y\end{cases}
$$

Example Let $X=\mathbb{R}$ be the real line with the usual topology $\mathscr{T}=\{(a, b) \mid a<b \in \mathbb{R}\} \cup\{\emptyset, \mathbb{R}\}$ and let $Y=[0,1) \cup\{2\}$. Then the one-point set $\{2\}$ is open in the subspace topology \mathscr{T}_{Y}.
Definition Let A be a subset of a topological space X. A point p of X is called a limit point (or accumulation point) of A if every neighborhood N of p contains at least one point of $A \backslash\{p\}$, i.e.

$$
N \cap A \backslash\{p\} \neq \emptyset
$$

Let A^{\prime} denote the set of limit points of A. Note that a limit point of A may not be a point in A. Examples

1. Let $X=\mathbb{R}$ and let $A=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$. Then A has exactly one limit point, namely the origin.
2. Let $X=\mathbb{R}$ and let $A=[0,1)$. Then $[0,1]$ is the set of limit points of A.
3. Let $X=\mathbb{E}^{3}$ and let $A=\{(x, y, z) \mid x, y, z \in \mathbb{Q}\}$. Then \mathbb{E}^{3} is the set of limit points of A.
4. Let $X=\mathbb{E}^{3}$ and let $A=\{(x, y, z) \mid x, y, z \in \mathbb{Z}\}$. Then A does not have any limit points.
5. Let $X=\mathbb{R}$ with the finite complement topology \mathscr{T}_{f}. If we take A to be an infinite subset of X, then every point of X is a limit point of A. On the other hand a finite subset of X has no limit points in this topology.

Theorem A set is closed if and only if it contains all of its limit points.
Proof If A is closed, then $X \backslash A$ is open. Since

$$
A \cap(X \backslash A) \backslash\{p\}=\emptyset \quad \forall p \in X \backslash A
$$

$X \backslash A$ does not contain any limit point of A.
Therefore A contains all of its limit points.
Conversely, suppose A contains all of its limit points and let $p \in X \backslash A$. Since p is not a limit point of A, there is a neighborhood N of p such that

$$
N \cap A=\emptyset \Longrightarrow p \in N \subset X \backslash A
$$

This implies that $X \backslash A$ is a neighborhood of each of its points and consequently open.
Therefore A is closed.
Definition The union of A and all its limit points is called the closure of A and is written $\bar{A}=A \cup A^{\prime}$.
Theorem The closure of A is the smallest closed set containing A, in other words the intersection of all closed sets which contain A.
Proof For each $p \in X \backslash \bar{A}$, there exists an open neighborhood U of p such that

$$
U \cap A=\emptyset .
$$

Since U is an open neighborhood of each of its points, U cannot contain any of the limit points of A either, i.e.

$$
U \cap A^{\prime}=\emptyset \Longrightarrow U \cap \bar{A}=\emptyset \Longrightarrow p \in U \subseteq X \backslash \bar{A} \Longrightarrow X \backslash \bar{A} \text { is open and } \bar{A} \text { is closed }
$$

Let B be a closed set which contains A. Then

$$
B^{\prime} \subseteq B \Longrightarrow \bar{B}=B \cup B^{\prime} \subseteq B \subseteq \bar{B} \Longrightarrow B=\bar{B}
$$

and

$$
A^{\prime} \subseteq B^{\prime} \Longrightarrow \bar{A}=A \cup A^{\prime} \subseteq B \cup B^{\prime}=\bar{B}=B \Longrightarrow \bar{A} \subseteq B \Longrightarrow \bar{A} \subseteq \bigcap_{A \subseteq B \text { is closed }} B
$$

Since \bar{A} is closed and $A \subseteq \bar{A}$, this implies that $\bar{A} \in\{B \mid B$ is closed containing $A\}$ and thus

$$
\bigcap_{A \subseteq B \text { is closed }} B \subseteq \bar{A} \Longrightarrow \bar{A}=\bigcap_{A \subseteq B \text { is closed }} B
$$

Corollary A set is closed if and only if it is equal to its closure.
Definitions Let A be a subset of a topological space X. The interior of A, usually denoted $\stackrel{o}{A}$, is the union of all open sets contained in A, i.e.

$$
\stackrel{o}{A}=\bigcup_{U \text { is open and } U \subseteq A} U=\text { the largest open set contained in } A
$$

The frontier (or boundary) of A, usually denoted ∂A, is the intersection of the closure of A with the closure of $X \backslash A$, i.e.

$$
\partial A=\bar{A} \cap \overline{X \backslash A}
$$

Definition If X is a set, a basis for a topology on X is a collection \mathscr{B} of subsets of X (called basis elements) such that
(1) For each $x \in X$, there is at least one basis element B containing $x \Longrightarrow \bigcup_{B \in \mathscr{B}} B=X$.
(2) If x belongs to the intersection of two basis elements B_{1} and B_{2}, then there is a basis element B_{3} containing x such that

$$
B_{3} \subseteq B_{1} \cap B_{2}
$$

i.e. For any $B_{1}, B_{1} \in \mathscr{B}$ satisfy $B_{1} \cap B_{2} \neq \emptyset$, there is a $B_{3} \in \mathscr{B}$ such that $B_{3} \subseteq B_{1} \cap B_{2}$.

Definition If \mathscr{B} is a basis for a topology on X, the topology \mathscr{T} generated by \mathscr{B} is described as follows: A subset U of X is said to be open in X (that is, to be an element of \mathscr{T}) if for each $x \in U$, there is a basis element $B \in \mathscr{B}$ such that $x \in B$ and $B \subseteq U$, i.e.

$$
\mathscr{T}=\{U \mid \forall x \in U, \exists B \in \mathscr{B} \text { s.t. } x \in B \text { and } B \subset U\}
$$

Remark Note that each element of \mathscr{B} is open in X under this definition, so that $\mathscr{B} \subset \mathscr{T}$.
It is easy to check that the collection \mathscr{T} generated by the basis \mathscr{B} is, in fact, a topology on X.

- $\emptyset \in \mathscr{T}$ since it satisfies the defining condition of openess vacuously.
- $X \in \mathscr{T}$ since for each $x \in X$ there is a basis element containing x and contained in X.
- Let $\left\{U_{\alpha}\right\}_{\alpha \in J}$ be a collection of elements of \mathscr{T} and let $U=\bigcup_{\alpha \in J} U_{\alpha}$. Then $U \in \mathscr{T}$ since for each $x \in U$, there is an index α such that $x \in U_{\alpha}$ and since $U_{\alpha} \in \mathscr{T}$ there is a basis element B such that

$$
x \in B \subseteq U_{\alpha} \Longrightarrow x \in B \text { and } B \subseteq U \Longrightarrow U \in \mathscr{T}
$$

- Let $\left\{U_{i}\right\}_{1 \leq i \leq n}$ be a finite collection of elements of \mathscr{T} and let $U=\bigcap_{i=1}^{n} U_{i}$. Then $U \in \mathscr{T}$.

Theorem Let β be a nonempty collection of subsets of a set X. If the intersection of any finite members of β is always in β, and if $\cup \beta=X$, then β is a basis for a topology on X.
Proof Take the obvious candidate, namely the collection of all unions of members of β as the open sets, then check the requirements for a topology.

Continuous Functions

Definition Let X and Y be topological spaces. A function $f: X \rightarrow Y$ is continuous on X if for each point x of X and each neighborhood N of $f(x)$ in Y the set $f^{-1}(N)$ is a neighborhood of x in X.
A continuous function is very often called a map for short (in this book).
A function $h: X \rightarrow Y$ is called a homeomorphism if it is one-to-one, onto, continuous and has a continuous inverse $h^{-1}: Y \rightarrow X$. When such a function exists, X and Y are called homeomorphic (or topologically equivalent) spaces.
Theorem Let X and Y be topological spaces. A function $f: X \rightarrow Y$ is continuous if and only if the inverse image of each open set of Y is open in X.

Proof

(\Rightarrow) If $f: X \rightarrow Y$ is continuous and if O is an open subset of Y, then O is a neighborhood of each of its points and, by the definition of continuity, $f^{-1}(O)$ must be a neighborhood of each of its points in X. Hence $f^{-1}(O)$ is an open set in X.
(\Leftarrow) For each point x of X and each neighborhood N of $f(x)$ in Y, there is an open subset O in Y such that

$$
f(x) \in O \subseteq N \text { and } f^{-1}(O) \text { is open in } X
$$

Since

$$
x \in f^{-1}(O) \subseteq f^{-1}(N)
$$

$f^{-1}(N)$ is a neighborhood of x, f is continuous at x. Since f is continuous for each $x \in X, f$ is continuous on X.
Example Let $X=[0,1) \subset \mathbb{R}, Y=C \subset \mathbb{C}$ be the unit circle in the complex plane \mathbb{C} and let $f:[0,1) \rightarrow C$ be defined by

$$
f(x)=e^{2 \pi i x}=\cos 2 \pi x+i \sin 2 \pi x \quad \text { for each } x \in[0,1) .
$$

Note that f is continuous, one-to-one, onto, but its inverse $f^{-1}: C \rightarrow[0,1)$ is not continuous (e.g. $\left(f^{-1}\right)^{-1}([0,1 / 2))=\left\{p \in C \mid f^{-1}(p) \in[0,1)\right\}$ is not open in C while $[0,1 / 2)$ is open in $[0,1))$.
Theorem Let X, Y and Z be topological spaces. If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are continuous functions, then the composition $g \circ f: X \rightarrow Z$ is a continuous function.
Proof Let O be an open set in Z. Since

$$
(g \circ f)^{-1}(O)=f^{-1} g^{-1}(O)
$$

and $g^{-1}(O)$ is open in Y because g is continuous, so $f^{-1} g^{-1}(O)$ must be open in X by the continuity of f. Therefore $g \circ f: X \rightarrow Z$ is continuous.
Theorem Suppose $f: X \rightarrow Y$ is continuous, and let $A \subseteq X$ have the subspace topology. Then the restriction $\left.f\right|_{A}: A \rightarrow Y$ is continuous.
Proof Let O be an open set in Y and notice that

$$
\left(\left.f\right|_{A}\right)^{-1}(O)=A \cap f^{-1}(O) .
$$

Since f is continuous, $f^{-1}(O)$ is open in X. Therefore $\left(\left.f\right|_{A}\right)^{-1}(O)$ is open in the subspace topology on A, and the continuity of $\left.f\right|_{A}$ follows from the preceding Theorem.
Definition The map $1_{X}: X \rightarrow X$, defined by $1_{X}(x)=x$ for each $x \in X$, is called the identity map of X . If we restrict 1_{X} to a subspace A of X we obtain the inclusion map $i: A \rightarrow X$.
Theorem The following are equivalent:
(a) $f: X \rightarrow Y$ is continuous.
(b) If β is a base for the topology of Y, the inverse image of every member of β is open in X.
(c) $f(\bar{A}) \subseteq \overline{f(A)}$ for any subset A of X.
(d) $\overline{f^{-1}(B)} \subseteq f^{-1}(\bar{B})$ for any subset B of Y.
(e) The inverse image of each closed set in Y is closed in X.

Proof

$[(a) \Rightarrow(b)]$ For each $B \in \beta$, since B is an open set in the topology generated by $\beta, f^{-1}(B)$ is open in X.
$[(b) \Rightarrow(c)]$ Let A be a subset of X. Since $\bar{A}=A \cup A^{\prime}$ and $f(A) \subseteq \overline{f(A)}=f(A) \cup f(A)^{\prime}$, it suffices to show that if $x \in \bar{A} \backslash A$ and if $f(x) \notin f(A)$, then $f(x) \in f(A)^{\prime}$.
Suppose that $x \in \bar{A} \backslash A, f(x) \notin f(A)$ and N is a neighborhood of $f(x)$ in Y. Since β is a base for the topology of Y, there exists a basis element (an open subset) B in β such that

$$
f(x) \in B \subseteq N \Longrightarrow x \in f^{-1}(B) \subseteq f^{-1}(N)
$$

Assuming (b), the set $f^{-1}(B)$ is open in X and is therefore a neighborhood of x. Also since

$$
x \in A^{\prime} \Longrightarrow f^{-1}(B) \cap A \neq \emptyset \Longrightarrow B \cap f(A) \neq \emptyset
$$

and since

$$
B \cap f(A) \subseteq N \cap f(A) \Longrightarrow N \cap f(A) \backslash\{f(x)\}=N \cap f(A) \neq \emptyset \Longrightarrow f(x) \in f(A)^{\prime}
$$

This completes the proof of (c).
$[(c) \Rightarrow(d)]$ For any subset B of Y, since $f^{-1}(B)$ is a subset of X and by assuming (c), we have

$$
f\left(\overline{f^{-1}(B)}\right) \subseteq \overline{f\left(f^{-1}(B)\right)}=\bar{B} \Longrightarrow \overline{f^{-1}(B)} \subseteq f^{-1}(\bar{B})
$$

$[(d) \Rightarrow(e)]$ If B is a closed subset of Y, since $\bar{B}=B$ and by assuming (d), we have

$$
\overline{f^{-1}(B)} \subseteq f^{-1}(\bar{B})=f^{-1}(B) \subseteq \overline{f^{-1}(B)} \Longrightarrow f^{-1}(B)=\overline{f^{-1}(B)}
$$

and thus $f^{-1}(B)$ is closed in X.
$[(e) \Rightarrow(a)]$ For each open set O of Y, since

$$
X \backslash f^{-1}(O)=\{x \in X \mid f(x) \notin O\}=\{x \in X \mid f(x) \in Y \backslash O\}=f^{-1}(Y \backslash O)
$$

$Y \backslash O$ is closed in Y and by assuming (e), we have $f^{-1}(Y \backslash O)=X \backslash f^{-1}(O)$ is closed in X and thus $f^{-1}(O)$ is open in X. This shows that $f: X \rightarrow Y$ is continuous.

